corresponding *j*th coordinate obtained from Set 1 and Set 2, and σ_j is the pooled standard deviation of Δ_j , *i.e.* $\Delta_j = |p(1)_j - p(2)_j|$ and $\sigma_j = \{\sigma^2 p(1)_j + \sigma^2 p(2)_j\}^{1/2}$. Results derived from data containing a random normal distribution of error would give a linear plot of zero intercept and unit slope. Fig. 1 shows the half-normal probability plot based on the final atomic coordinates given for the 16 independent non-hydrogen atoms refined from Set 1 and Set 2 and the corresponding least-squares derived standard deviations.

Fig. 1 is not linear and demonstrates the presence of systematic error in one or both sets of atomic coordinates. The initial slope (all points with experimental $\Delta_J/\sigma_J < 2.0$) is about 1.3: that for the final point, O(2)x, is 2.5. In the absence of further experimental information to aid in partitioning the systematic error between Sets 1 and 2, it is assumed that the standard deviations in both sets are underestimated by a factor of at least 1.3 and possibly as much as 2.5.

Standard deviations were not given for the anisotropic

temperature coefficients for Set 2: these coefficients are listed for the four heaviest atoms, and Debye-Waller factors only for the remaining lighter atoms. Assuming all σB_{IJ} for Set 1 are equal at 0.08 Å² (as given by Naqvi *et al.*, except for some smaller value phosphorus σB_{IJ}) and those for Set 2 equal at 0.22 Å², Fig. 2 is obtained for the resulting 24 coefficients. The array in Fig. 2 is considerably more linear than in Fig. 1; the slope in Fig. 2 shows that these assumed standard deviations are underestimated by about a factor of 3.2.

References

- Abrahams, S. C. & Keve, E. T. (1971). Acta Cryst. A27, 157.
- HAMILTON, W. C. & ABRAHAMS, S. C. (1972). Acta Cryst. A 28, 215.
- NAQVI, R. R., WHEATLEY, P. J. & FORESTI-SERANTONI, E. (1971). J. Chem. Soc. (A), p. 2751.

Acta Cryst. (1972). B28, 2887

The crystal structure of toluene- α ,2-dicarboxylic acid, $C_9H_8O_4$: errata. By M. P. GUPTA and M. SAHU, Department of Physics, University of Ranchi, Ranchi-8, India

(Received 28 March 1972 and in revised form 23 May 1972)

Corrected values of interatomic distances, bond angles and deviations from atomic planes are given for toluene- α ,2-dicarboxylic acid.

Our attention has been drawn by Professor Jerry Donohue (private communication) to some numerical errors in the geometrical factors reported in Tables 3, 4, 5 and 6 of our paper (Gupta & Sahu, 1971).

A recalculation of the above values has shown that the following changes should be noted (there are no errors in the atomic coordinates as published earlier).

Bond:	C(3) - C(4)	1·367 Å
H-bond:	O(1)-O(2)*	2.65
H-bond:	O(3)-bO(4)*	2.61
Bond ang	les:	
O(1)-C(1)-O(2)	120·0°
O(1)-C(1	-C(2)	112-1
O(2)-C(1)-C(2)	127.9
C(8)-C(9))-O(3)	113.8

O(3)-C(9)-O(4)	125.9
C(8) - C(9) - O(4)	120.3
C(7)-C(2)-C(3)	120.3
C(1)-C(2)-C(3)	123.1
C(1)-C(2)-C(7)	116.6

The deviations of atoms from the best plane through the central aromatic ring are given in parentheses below.

C(2)	(-0.007),	C(3)	(0.009),	C(4)	(0.008)
C(5)	(-0.028),	C(6)	(0.029),	C(7)	(-0.013)

Full details of the recalculated values are available from the authors.

Reference

GUPTA, M. P. & SAHU, M. (1971). Acta Cryst. B27, 2469.