corresponding j th coordinate obtained from Set 1 and Set 2 , and σ_{j} is the pooled standard deviation of Δ_{j}, i.e. $\Delta_{j}=$ $\left|p(1)_{j}-p(2)_{j}\right|$ and $\sigma_{j}=\left\{\sigma^{2} p(1)_{j}+\sigma^{2} p(2)_{j}\right\}^{1 / 2}$. Results derived from data containing a random normal distribution of error would give a linear plot of zero intercept and unit slope. Fig. 1 shows the half-normal probability plot based on the final atomic coordinates given for the 16 independent nonhydrogen atoms refined from Set 1 and Set 2 and the corresponding least-squares derived standard deviations.
Fig. 1 is not linear and demonstrates the presence of systematic error in one or both sets of atomic coordinates. The initial slope (all points with experimental $\Delta_{J} / \sigma_{J}<2 \cdot 0$) is about $1 \cdot 3$: that for the final point, $\mathrm{O}(2) x$, is $2 \cdot 5$. In the absence of further experimental information to aid in partitioning the systematic error between Sets 1 and 2, it is assumed that the standard deviations in both sets are underestimated by a factor of at least $1 \cdot 3$ and possibly as much as $2 \cdot 5$.

Standard deviations were not given for the anisotropic
temperature coefficients for Set 2: these coefficients are listed for the four heaviest atoms, and Debye-Waller factors only for the remaining lighter atoms. Assuming all $\sigma B_{I J}$ for Set 1 are equal at $0.08 \AA^{2}$ (as given by Naqvi et al., except for some smaller value phosphorus $\sigma B_{l j}$) and those for Set 2 equal at $0.22 \AA^{2}$, Fig. 2 is obtained for the resulting 24 coefficients. The array in Fig. 2 is considerably more linear than in Fig. 1; the slope in Fig. 2 shows that these assumed standard deviations are underestimated by about a factor of $3 \cdot 2$.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A 27, 157.

Hamilton, W. C. \& Abrahams, S. C. (1972). Acta Cryst. A28, 215.
Naqvi, R. R., Wheatley, P. J. \& Foresti-Serantoni, E. (1971). J. Chem. Soc. (A), p. 2751.

Acta Cryst. (1972). B28, 2887
The crystal structure of toluene-a,2-dicarboxylic acid, $\mathrm{C}_{\mathbf{9}} \mathbf{H}_{\mathbf{8}} \mathrm{O}_{\mathbf{4}}$: errata. By M. P. Gupta and M. Sahu, Department of Physics, University of Ranchi, Ranchi-8, India
(Received 28 March 1972 and in revised form 23 May 1972)
Corrected values of interatomic distances, bond angles and deviations from atomic planes are given for toluene- $\alpha, 2$-dicarboxylic acid.

Our attention has been drawn by Professor Jerry Donohue (private communication) to some numerical errors in the geometrical factors reported in Tables 3, 4, 5 and 6 of our paper (Gupta \& Sahu, 1971).

A recalculation of the above values has shown that the following changes should be noted (there are no errors in the atomic coordinates as published earlier).

Bond:	$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 367 \AA$
H-bond:	$\mathrm{O}(1)-\mathrm{O}(2)^{*}$	$2 \cdot 65$
H-bond:	$\mathrm{O}(3)-b \mathrm{O}(4)^{*}$	$2 \cdot 61$

Bond angles:

$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	120.0°
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	112.1
$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	127.9
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(3)$	113.8

$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{O}(4)$	$125 \cdot 9$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(4)$	$120 \cdot 3$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	$120 \cdot 3$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$123 \cdot 1$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	$116 \cdot 6$

The deviations of atoms from the best plane through the central aromatic ring are given in parentheses below.

$\mathrm{C}(2)$	(-0.007),	$\mathrm{C}(3)$	(0.009),	$\mathrm{C}(4)$	(0.008)
$\mathrm{C}(5)$	(-0.028),	$\mathrm{C}(6)$	(0.029),	$\mathrm{C}(7)$	(-0.013)

Full details of the recalculated values are available from the authors.

Reference

Gupta, M. P. \& Sahu, M. (1971). Acta Cryst. B27, 2469.

